On the eigenvalue asymptotics of Zonal Schrödinger operators in even metric and non-even metric
نویسندگان
چکیده
منابع مشابه
Nonclassical Eigenvalue Asymptotics for Operators of Schrödinger
which depends on the volume u)n of the unit sphere in R n and the beta function. Assuming /3 < 2 we see that integral (2) becomes divergent if V (x) vanishes to a sufficiently high order. The simplest such potential is V(x,y) = \x\\y\P o n R n + R m . The Weyl (volume counting) principle, when applied to the corresponding Schrödinger operator — A-hV(x), fails to predict discrete spectrum below ...
متن کاملWeakly Coupled Schrödinger Operators on Regular Metric Trees
Spectral properties of the Schrödinger operator Aλ = −∆+λV on regular metric trees are studied. It is shown that as λ goes to zero the behavior of the negative eigenvalues of Aλ depends on the global structure of the tree. Mathematics Subject Classification: 34L40, 34B24, 34B45.
متن کاملEigenvalue Estimates for Schrödinger Operators on Metric Trees
We consider Schrödinger operators on regular metric trees and prove LiebThirring and Cwikel-Lieb-Rozenblum inequalities for their negative eigenvalues. The validity of these inequalities depends on the volume growth of the tree. We show that the bounds are valid in the endpoint case and reflect the correct order in the weak or strong coupling limit.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Cogent Mathematics
سال: 2016
ISSN: 2331-1835
DOI: 10.1080/23311835.2016.1141452